Feasibility study of OSCN- and Lactoferrin (Meveol®) nebulization for Cystic Fibrosis patients

1. Alaxia, Vaulx en Velin, France (2) Aerodrug, Tours, France (3) CER group, Mariloe, Belgium.

Introduction...

The hypothiocyanite (OSCN) and Lactoferrin (Lf) system, described as the major human host defense system against infection, is defective in Cystic Fibrosis (CF) patients (1-4). Figure 1. Breathing difficulty is the most serious symptom, resulting from frequent lung infections which were mostly treated but not completely cured (5).

Meveol®, the new orphan drug developed for CF patient (N°EU/3/09/654) is an association of OSCN and Lf active on P. aeruginosa mucoid (Pam) and non mucoid (Pa), on β. cepacia, and on MRSA. Figure 2.

Objectives...

- The aim of this study was first to confirm the antimicrobial effect of Meveol® on Pam and on an emerging pathogen M. abscessus (7).
- We have also investigate the feasibility to develop an aerosol Meveol® treatment. The objective was to select, for future clinical trials, the nebulization system which proposes an effective Meveol® treatment (8).

Materials and methods...

Antimicrobial activity of Meveol®:

- In vitro test: 15 mice C57Bl6 were intratracheally infected with 106 CFU of Pam isolated from CF patients, and then treated with Meveol® (50 µL) 24h and 48h after infection, by instillation. The lung colonization (CFU/g) was determined 72h after infection (counting method on agar plates).
- In vivo test on M. abscessus (Ma):

In a culture of Ma (106 CFU/mL) obtained in MH broth at 28°C. 200 µL of Meveol® was directly instilled. A control culture, without Meveol®, was treated in the same conditions. At 0h, 0.5h, 1h, 2h, 4h, 24h and 48h, a sample of both cultures was neutralized with trisulphite (1mL-2mm) and diluted in PBS. Dilutions were then plated in duplicate on agar plates. After 7 incubation days (28°C), present colonies were counted to determine the number of CFU/mL of culture.

Nebulization of Meveol®:

- Jet and mesh nebulizers:
 - The Numa®/Aero® DTF, France (A) and the Pari LCPLUS® (Pari, Pulmomed, France) (B).
 - The E-Flow® (Pari, Germany – C), the Micro-Air® (Numann, Japan – D) and the Aeroneb® Co (Aerogen, Ireland) associated with the Idehaler® chamber (Aerodrug, France) (E).
- Three copies of each nebulizer and their mouthpieces were used and tested in duplicate.

OSCN and Lf stability after nebulization:

- Meveol® (5 mL) was nebulized and aerosols were collected in an Impinger at 12.6 L/min (Ace Glass Inc, USA). Nebulized OSCN and not nebulized Meveol® were simultaneously analyzed by spectrophotometry (Thomas & Aune colorimetric method) to determine the OSCN concentration,
- Ratios of the [OSCN] and of the [Lf] measured before and after nebulization were determined.

Aerosols characterizations:

- Particle size distributions of aerosols produced by all devices were measured (Malvern, Mother, UK) to determine the volume mean diameter (VMD) and the fine particle fraction (FPF) defined as the % of particles with a diameter smaller than 5 µm predicted a lung deposition.
- Inhalable mass of Meveol® produced by nebulizers was collected in an inhalation filter (PARI, Pulmomed, France) connected to a respiratory pump simulating the patient breath (15 breaths/min, 500 mL, I/E=40/60). The drug mass of Meveol® collected (drug mass may penetrate into the patient airways) was determined using a residual gravimetric method. Inhalable fraction was calculated as follows: (drug mass collected in the filter)/(drug mass loaded in the nebulizer).
- The respirable fraction of Meveol® (Fp fraction of Meveol®) in terms of nebulizer charge, which may deposit into patient lungs was calculated as the part of between the inhalable fraction and the FPF.

Results...

Antimicrobial activity of Meveol®:

- In vitro test: 6/15 mice died in control group and 3/15 mice in treated group. 72h after infection with Pam, mice treated with Meveol® presented a significantly lower level of lung bacterial colonization, when compared to 1.5 ± 0.5 log CFU/g vs. 3.08 ± 0.4 log CFU/g of lungs (p<0.05).
- In vivo kinetic activity of OSCN/Lf: Meveol® has allowed in vivo the total eradication of M. abscessus, within 48h of inoculation. Figure 2.

Nebulization of Meveol®:

- Successfully nebulized, Meveol® was not disturbed by the physical constraints of nebulization. OSCN and Lf were both preserved in the aerosol form of Meveol® nonnebulized (nebulized/not nebulized) determined for [OSCN] and [Lf] were, for all devices, close to 1.
- Aerosols of Meveol® produced by each device were strongly variables in terms of VMD (2.8 µm to 5.9 µm), of FPF (33 % to 63 %), of nebulization time (8.5 min to 41.7 min), of inhalable fraction (18 % to 58 %) and of respirable fraction (6 % to 35 %).

Conclusions...

- Study confirms the antimicrobial effect of Meveol® on P. aeruginosa mucoid, and on M. abscessus, an emerging pathogen.
- The Aeroneb® Go/Idehaler® Pocket® device has been selected to nebulize Meveol® for future clinical trials. The system produces in vivo a high respirable fraction (31 %) during a short nebulization time (9.8 min).