Evaluation of the performance of sonic nebuliser to target maxillary sinuses

Sandrine Le Guellec

- AERODRUG -
Faculty of Medicine
Tours (37), France

1. Context

- Patients with cystic fibrosis (CF) suffer from **SINONASAL pathologies**: nasal obstruction, rhinosinusitis, sinonasal inflammation, PNS

(Fokkens et al., rhinology, EPOS2007, EPOS2012)

» **Severe & infected chronic rhinosinusitis**

- **MAXILLARY SINUSES (MS)** are recognized major infected sites *(with ethmoid and middle meatus)*

(Laube B, JAM, 2007)

In CF patients, **MS** are described as a **SOURCE (NICHE or RESERVOIR)** for *Pseudomonas aeruginosa* clones to proliferate & to diversify, for subsequent lung chronic infections.

(Hansen et al., ISME, 2012; Aanaes, 2011; Mainz JG et al., 2011 & 2009; Bendouah et al., ORL-HNS, 2006; Hoiby et al., 1989 to 2005)
2. Treatments

- Inhaled corticoïds (nasal sprays) +/- antibiotic per os (Grade A)

- Topical antibiotic NOT RECOMMENDED (Grade C)

 - However CF patients often need important antibiotic lavages (+/- sinus surgery) to reduce symptoms

NASAL SPRAYS

- Large particle size 20 to 200µm

- Drug deposition into nasal valve

- NOT for antibiotic

NASAL NEBULISERS

- Particle size 4µm

- Target infected sites

- Available for antibiotic delivery

- Specific device use VIBRATIONS to improve sinus deposition

Therapeutic OPTION for topical administration

(Suman et al., PharmRes 1999; Moeller et al., ORL HNS, 2010; Kundoor et al., PharmRes, 2009)
3. **Objective**

To study the deposition of antibiotic in nasal cavities, in particular in maxillary sinuses (therapeutic interest), obtained with this specific nasal nebuliser.

IN VITRO in a **plastinated head model**.

To evaluate this nasal nebuliser for intranasal administration.

IN VIVO in **healthy volunteers** (by scintigraphy method).
4. **Sonic nasal nebuliser**

- The Atomisor NL11SN®/AOHBOX® (DTF medical, France) produces a **sonic aerosol** by adding a **100 Hz SOUND**.

- **Both nostrils** administration via a **nasal plug**.

Breath-enhanced jet nebuliser

NASAL PLUG

AIR SOURCE

SONIC AEROSOL

Right MS ostium

Inferior turbinate

Right nasal fossa

Sonic nasal nebuliser

Air source

Nasal plug

SONIC AEROSOL
5. IN VITRO study

METHODS

- Plastinated head model (NASAL model) with free exterior access to MS

- GENTAMICINE nebulisations (10min) with the sonic NL11SN (with 100Hz sound) in comparison with a nebuliser without sound

 To TEST the effect of the sound

- Gentamicine is **collected** into MS (rinse) and **quantified** (FPIA test)
IN VITRO RESULTS

Gentamicine concentration collected into MS of head model, after CLASSIC or SONIC NL11SN nebulisations.

0.68 ± 0.27

<0.27

$\times 3 \; p<0.05$

Duran et al., ANORL, 2012, In Press
7. IN VIVO Study

METHODS

- 7 non-smoking healthy male volunteers (21 to 36 years).

- STEP 1: NASAL Ventilation with 81mKr gas
 with and without NL11SN to test the effect of the sound

- STEP 2: NL11SN nebulisations with 99mTc-DTPA (10min)

- Gamma camera images: NASAL CAVITIES and THORAX

 ➔ % of aerosol deposited into NASAL & LUNGS were quantified.
8. IN VIVO study

IN VIVO RESULTS

- Krypton images of nasal cavities (Anterior view)
- Aerosol deposition into volunteers’ airways (& NASAL profile)

1-A (without sound)
Nasal cavities

1-B (with sound)
Penetration into maxillary sinuses

<table>
<thead>
<tr>
<th>AIRWAYS</th>
<th>Deposition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPER AIRWAYS</td>
<td>73 ± 10%</td>
</tr>
<tr>
<td>LOWER AIRWAYS</td>
<td>27 ± 10%</td>
</tr>
</tbody>
</table>

(Le Guellec et al., RDD 2009; Vecellio et al., IJP, 2011)
9. Conclusions

IN VIVO study demonstrated

The **100 Hz SOUND** used by the **NL11SN nebuliser** improves MAXILLARY SINUSES VENTILATION;

The **sonic nasal NL11SN** optimizes **NASAL AEROSOL DEPOSITION**;

Tested IN VITRO with an antibiotic, the **100 Hz SOUND used by the NL11SN** increases the **DEPOSITION OF AEROSOL** into MAXILLARY SINUSES (INFECTED SITES);
10. **Sinus drug deposition?**

- **Q:** Is the aerosol drug deposited into MS efficient? i.e. is a local effect induced?
- **Proposition:** Comparison with an effective lung treatment

Effective CF Lung Deposition

IN VITRO DRUG DEPOSITION

- 45 mg
 - Lung tobramycin deposition
 - Total lung tissue surface $\cong 130 \text{ m}^2$
 - $= 0.036 \mu g/cm^2$

- 3.31 µg
 - Both MS gentamicin deposition
 - Mean MS volume 17 cm3
 - Both MS tissue surface = 61.8 cm^2
 - $= 0.052 \mu g/cm^2$

MS Drug Deposition Equivalent to Lung Deposition

- Durand et al., 2012, in press
- Lenney et al., CF, 2011; Emirzeoglu et al., ANL, 2007
SINUS aminoside deposition, expressed per unit of tissue surface:
- is equivalent to a LUNG aminoside deposition recognized as effective lung treatment in CF patients.
- can be considered sufficient to induce a therapeutic local effect.

In definitive, the NL11SN seems to be adapted for CF patients to treat sinus infections.
Acknowledgments

Thanks to collaborators

G. Chantrel, L. Vecellio

M. Durand, J. Pourchez, F. Dubois, G. Aubert

R. de Gersem, F. Jamar, C. Hupin, G. Reychler, L. Pitance

D. Le Pennec, P. Diot.

And THANKS for your attention